On approximating weakly/properly efficient solutions in multi-objective programming

نویسندگان

  • B. A. Ghaznavi-ghosoni
  • Esmaile Khorram
چکیده

This paper deals with approximate solutions of general (that is, without any convexity assumption) multi-objective optimization problems (MOPs). In this text, by reviewing some standard scalarization techniques we are interested in finding the relationships between ε-(weakly, properly) efficient points of an MOP and ε-optimal solutions of the related scalarized problem. For this purpose, the relationships between ε ∈ R= and ε ∈ R= , for a single objective and multi-objective problems, respectively, are analyzed. In fact, necessary and/or sufficient conditions for approximating (weakly, properly) efficient points of a general MOP via approximate solutions of the scalarized problems are obtained. © 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimality and Duality for an Efficient Solution of Multiobjective Nonlinear Fractional Programming Problem Involving Semilocally Convex Functions

In this paper, the problem under consideration is multiobjective non-linear fractional programming problem involving semilocally convex and related functions. We have discussed the interrelation between the solution sets involving properly efficient solutions of multiobjective fractional programming and corresponding scalar fractional programming problem. Necessary and sufficient optimality...

متن کامل

An L1-norm method for generating all of efficient solutions of multi-objective integer linear programming problem

This paper extends the proposed method by Jahanshahloo et al. (2004) (a method for generating all the efficient solutions of a 0–1 multi-objective linear programming problem, Asia-Pacific Journal of Operational Research). This paper considers the recession direction for a multi-objective integer linear programming (MOILP) problem and presents necessary and sufficient conditions to have unbounde...

متن کامل

A General Scalar-Valued Gap Function for Nonsmooth Multiobjective Semi-Infinite Programming

For a nonsmooth multiobjective mathematical programming problem governed by infinitely many constraints‎, ‎we define a new gap function that generalizes the definitions of this concept in other articles‎. ‎Then‎, ‎we characterize the efficient‎, ‎weakly efficient‎, ‎and properly efficient solutions of the problem utilizing this new gap function‎. ‎Our results are based on $(Phi,rho)-$invexity‎,...

متن کامل

UNBOUNDEDNESS IN MOILP AND ITS EFFICIENT SOLUTIONS

In this paper we investigate Multi-Objective Integer Linear Programming (MOILP) problems with unbounded feasible region and introduce recession direction for MOILP problems. Then we present necessary and sufficient conditions to have unbounded feasible region and infinite optimal values for objective functions of MOILP problems. Finally we present some examples with unbounded feasible region and fi...

متن کامل

Computing Efficient Solutions of Nonconvex Multi-Objective Problems via Scalarization

This paper presents a new method for scalarization of nonlinear multi-objective optimization problems. We introduce a special class of monotonically increasing sublinear scalarizing functions and show that the scalar optimization problem constructed by using these functions, enables to compute complete set of weakly efficient, efficient, and properly efficient solutions of multi-objective optim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Mathematical and Computer Modelling

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2011